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Abstract: Finding accurate methods for estimating and mapping land prices at the 
macro-scale based on publicly accessible and low-cost spatial data is an essential step in 
producing a meaningful reference for regional planners. This asset would assist them in 
making economically justified decisions in favor of key investors for development projects and 
post-disaster recovery efforts. Since 2005, the Ministry of Land, Infrastructure, and Transport 
of Japan has made land price data open to the public in the form of observations at dispersed 
locations. Although this data is useful, it does not provide complete information at every site 
for all market participants. Therefore, estimating and mapping land prices based on sound 
statistical theories is required. This paper presents a comparative study of spatial prediction of 
land prices in 2015 in Fukushima prefecture based on geostatistical methods and machine 
learning algorithms. Land use, elevation, and socioeconomic factors, including population 
density and distance to railway stations, were used for modeling. Results show the superiority 
of the random forest algorithm. Overall, land prices are distributed unevenly across the pre-
fecture with the most expensive land located in the western region characterized by flat to-
pography and the availability of well-connected and highly dense economic hotspots. 

Keywords: land price; spatial estimation; kriging; machine learning; Fukushima prefecture, Japan 

1  Introduction 
Maps depicting the spatial distribution of land prices are an essential reference in urban and 
regional planning during post-disaster recovery periods and beyond. Such maps are em-
ployed as one of the strategic assets for various purposes, such as optimally allocating land 
resources (Hu et al., 2016), developing special land policies for potential investors, and 
making economically justified planning decisions either by planning authorities or ordinary 
citizens (Cellmer et al., 2014). It is always critical for key investors and planners to investi-
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gate the economic value of land before starting any prospective project at the local and re-
gional levels. However, it is more challenging to examine the variation in land prices in a 
wide area. This is due to the incredible budget- and time-consuming process behind extract-
ing land price maps covering a whole region, which necessitates costly and lengthy field 
surveys. Furthermore, the available samples do not usually cover the entire study area in 
question as the data is collected from dispersed locations. For this reason, a specific spatial 
analysis is required to estimate land values at any given site. 

Geographic Information Systems (GIS) coupled with spatial statistics provide the neces-
sary tools for estimating land prices and extracting accurate maps based on rigorous mathe-
matical models. In recent years, several studies with the objective of estimating and/or map-
ping land prices have been carried out. However, they differ significantly when it comes to 
the methodologies followed, the explanatory variables considered, and the spatial scale of 
the study area selected. Table 1 lists reviewed studies related to the prediction and/or map-
ping of land and housing prices worldwide, grouped by the implemented estimation ap-
proaches that can be split into four categories: (1) hedonic models, (2) geostatistical methods, 
(3) machine learning algorithms, and (4) hybrid models or multiple approaches compared. 
Although the relationship between housing prices and land prices has been a controversial 
topic in terms of the relevant determining factors considered and the statistical models ap-
plied (Wen and Goodman, 2013), we present studies that dealt with both. 
 
Table 1  Descriptive list of reviewed literature regarding land price estimation/mapping grouped by estimation 
approach: (1) hedonic models, (2) geostatistical methods, (3) machine learning algorithms, and (4) comparison of 
various approaches 

Estimation 
approach Study Study area Method(s) Mapping Objective Highlighted results 

(Löchl, 2006) Canton Zurich, 
Switzerland 

Hedonic  
regression Yes 

Developing an esti-
mation model of rent 
and land prices 

Two classified maps 
of land prices for 
residential and com-
mercial uses 

(Kim and Kim, 
2016) 

Seoul, South  
Korea 

OLS and spa-
tial regression 
models 

No 

Estimation of land 
value using OLS and 
generalized regres-
sion models 

Spatial error model 
(SEM) found to be the 
best of the tested 
models 

Hedonic  
models 

(Hilal et al., 
2016) 

Côte-d’Or, 
France OLS No 

Estimation of the 
price of agricultural 
lands at cadastral 
levels based on pre-
vious real estate 
transactions 

Hedonic prices were 
calculated based on a 
range of attributes 
influencing agricul-
tural lands most nota-
ble time effects  

(Luo and Wei, 
2004) 

Milwaukee, 
Wisconsin, USA Kriging No 

Predicting urban land 
values of different 
land use categories 
using kriging models 

Overall average stan-
dard error of 2% 

(Chica-Olmo, 
2007) 

City of Granada, 
Spain 

Kriging and 
cokriging Yes 

Estimating and map-
ping housing prices 
using kriging and 
cokriging approaches

Cokriging has a lower 
standard error com-
pared with that of 
kriging 

Geostatistical 
methods 

(Inoue et al., 
2007) 

Tokyo 23 wards, 
Japan Kriging Yes 

Mapping estimated 
land prices in To-
kyo’s 23 wards from 
1975 to 2004 

Kriging model-based 
results were more 
accurate than those for 
OLS with the average 
error ranging from 2% 
to 10% 

(To be continued on the next page) 
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(Continued) 
Estimation 
approach Study Study area Method(s) Mapping Objective Highlighted results 

(Tsutsumi et al., 
2011) 

Tokyo metro-
politan area, 
Japan 

Regression 
kriging Yes 

Developing a system 
to estimate and map 
residential land price 
in the Tokyo metro-
politan area 

10% was the average 
error ratio for the 
exponential model but 
18.3% for the Gaus-
sian model 

(Kuntz and 
Helbich, 2014)

Metropolitan 
area of Vienna, 
Austria 

Kriging and cok-
riging Yes Mapping predicted 

real estate prices  

Universal cokriging 
showed better results 
in terms of 
cross-validation re-
sults 

(Chica-Olmo et 
al., 2019) 

City of Gre-
nada, Spain 

Regression and 
universal  
cokriging 

Yes 

Spatiotemporally 
estimating housing 
price variations 
1988–2005 

Regression cokriging 
was found to be 
slightly better 

Geostatistical 
methods 

(Palma et al., 
2019) Italy Jackknife kriging No 

Predicting real estate 
prices based on 
socioeconomic fac-
tors for the period 
2014–2016 

Accuracy of the mod-
el improved when 
considering the 
spatio-temporal cor-
relation 

(Gu et al., 2011)
A district of 
Tangshan city, 
China 

Hybrid genetic 
algorithm and 
support vector 
machine model 
(G-SVM), Grey 
Model (GM) 

No Forecasting housing 
prices 

G-SVM outperformed 
GM in many aspects 

(Antipov and 
Pokryshevskaya, 
2012) 

Saint Peters-
burg, Russia 

Machine learning 
algorithms No Estimating residen-

tial apartments 

Random forest was 
found to be the most 
robust among all 
methods 

(Wang et al., 
2014) 

Chongqing 
city, China 

SVM optimized 
by particle swarm 
optimization 
(PSO), BP neural 
network 

No 

Forecasting real 
estate price based on 
PSO-optimized 
SVM compared to 
other BP neural 
network  

PSO-SVM showed 
higher forecasting 
accuracy than BP 
neural network 

Machine 
learning al-
gorithms  

(Park and Bae, 
2015) 

Fairfax County, 
Virginia, USA

Machine learning 
algorithms (C4.5, 
RIPPER, Naïve 
Bayesian, and 
AdaBoost) 

No 

Prediction of hous-
ing prices using 
different machine 
learning methods 

RIPPER model out-
performed all selected 
methods 

(Bourassa et al., 
2010) 

Jefferson 
County,  
Kentucky, USA

OLS, nearest 
neighbors,  
geostatistical and 
trend  
surface models 

No 

Comparing the out-
comes of several 
methods estimating 
house prices 

The geostatistical 
model showed better 
results in terms of 
prediction errors 

(Sampathkumar 
et al., 2015) 

Chennai met-
ropolitan area, 
India 

Multiple  
regression and 
neural network 

No 

Modeling and esti-
mation of land 
prices based on 
economic and social 
factors 

Neural network and 
multiple regression 
performed well with a 
slight superiority of 
the former 

(Hu et al., 2016) Wuhan city, 
China 

Empirical Bayes-
ian kriging 
(EBK), GWR, 
OLS 

Yes 

Modeling and visu-
alizing dependency 
of urban residential 
land price and the 
influential variables 

Estimated coefficients 
of variables impacting 
land prices depend on 
the location based on 
GWR results which 
outperformed OLS 

Comparison 
of various 
approaches 

(Schernthanner 
et al., 2016) 

Potsdam,  
Germany 

Hedonic regres-
sion, kriging, and 
random forest 

Yes 

Comparing esti-
mated rental prices 
by three methods 
and visualize the 
outcome  

RF found to be the 
most accurate method 
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Hedonic modeling is based on the fact that a land parcel or a house is a function of its 
characteristics (Caplin et al., 2008) and is mostly expressed by a linear regression equation 
of structural, socioeconomic, and environmental factors. This modeling can be implemented 
using ordinary least squares (OLS; Crespo and Grêt-Regamey, 2013). It was among the first 
techniques for evaluating and predicting land or house prices and has long been used by 
many researchers, including Löchl (2006), Kim and Kim (2016), Bourassa et al. (2010), 
Schernthanner et al. (2016), and Hilal et al. (2016), among others. These models generally 
have several limitations because they depend on the availability of a large dataset which has 
high costs and requires time-consuming field surveys (Kuntz and Helbich, 2014). Following 
the development of regression modeling techniques, and taking into account the spatial na-
ture of land price observations, other methods have been developed based on spatial auto-
correlation and spatial heterogeneity (Crespo and Grêt-Regamey, 2013). Geographically 
weighted regression (GWR; Brunsdon et al., 1998) is an example of a regression-based 
method that incorporates the spatial dimension of attributes within the analysis, and many 
studies showed good results compared to traditional hedonic models. However, when the 
prediction accuracy of GWR is compared with those of geostatistical methods, many studies 
have reported low accuracy for GWR compared to that of kriging, for instance (e.g., Kuntz 
and Helbich, 2014). Kriging and cokriging models have been implemented for different top-
ics in geosciences (e.g., remote sensing, climatology, and agriculture) and have shown ro-
bust performance in terms of estimation errors. Due to their flexibility, Palma et al. (2019) 
affirmed the capability of geostatistical methods to tackle socioeconomic phenomena as well, 
which can be seen in the number of studies conducted to model land or house rental prices 
(e.g., Chica-Olmo, 2007; Chica-Olmo et al., 2019; Kuntz and Helbich, 2014; Luo and Wei, 
2004; Tsutsumi et al., 2011). Most recently, new studies introduced machine learning (ML) 
algorithms as possible alternatives to hedonic models and geostatistical methods to describe 
spatially and temporally the distribution of land prices. Gu et al. (2011), for instance, de-
veloped a hybrid model of a genetic algorithm and the random forest (RF) algorithm to 
forecast housing prices in a Chinese district of Tangshan city. Antipov and Pokryshevskaya 
(2012) conducted a comparative study of 10 ML methods to estimate residential apartments 
in St. Petersburg. A similar study was carried out by Park and Bae (2015) to model housing 
prices in Fairfax County (in the United States) by comparing various ML algorithms. Other 
efforts have been made to empirically compare the performance of two or more approaches 
among different ML, hedonic, and geostatistical techniques. For example, Bourassa et al. 
(2010) compared the house prices estimation results of OLS, a two-stage nearest neighbors’ 
residual procedure, geostatistical methods, and trend surface models based on around 13,000 
transactions from Louisville, Kentucky. According to the authors, the geostatistical approach 
based on the robust exponential mathematical model performed best. In a similar vein, 
Sampathkumar et al. (2015) investigated land price trends by employing multiple regression 
and neural networks to model land prices in the Indian Metropolitan Area of Chennai. They 
found that both approaches performed well; the second method was slightly better. Schern-
thanner et al. (2016) used hedonic regression, kriging, and the random forest algorithm to 
map the estimated rental prices in the German city of Potsdam. The authors concluded that 
the RF algorithm is the most accurate method for forecasting and mapping land prices in the 
region. 
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Overall, comparative spatial studies on estimation of land prices across a macro-area im-
plementing geostatistical methods and ML algorithms are scarce. Moreover, most of the pa-
pers used different datasets for each approach, which may lead to data-dependent results. 
Additionally, most studies did not map the spatial distribution of price estimation and con-
sequently, missed helpful, informative statistics in a given study area. The present study may 
contribute considerably to the increasing academic works on land prices by filling these re-
search gaps, as it aims at empirically comparing the outcome of three mathematical models 
of regression kriging and nine of the most frequently used ML algorithms. Specifically, this 
paper addresses the following objectives: (1) mapping the estimated land prices using re-
gression kriging and empirically assessing the outcomes, (2) mapping the predicted land 
prices using nine different ML algorithms and empirically evaluating the results, and (3) 
qualitatively and quantitatively comparing the results of the two approaches. 

The remainder of this paper is structured as follows. In Section 2, light is shed on land 
price estimation and mapping in Japan. In Section  3, the study area and the spatial estima-
tion techniques used are introduced, an overview of the data sources and the explanatory 
variables considered is provided, the methodological framework is presented. In Section  4, 
the results of the different analyses are provided and compared. In Section  5, the results and 
limitations of the study are discussed, and the conclusions are presented.  

2  Background of land price estimation and mapping in Japan 
In Japan, land is a precious natural resource, as the archipelagic country has limited flat ar-
eas and has been experiencing fast urban expansion for decades. Several factors influence 
the land price, including population density, proximity to economic hotspots (e.g., central 
business district (CBD)), accessibility to means of transportation and geophysical character-
istics (e.g., location, topography, and land use). In general, most of these factors are related 
to urban growth. Capozza and Helsley (1989), among others (e.g., Arnott and Lewis, 1979; 
Capozza et al., 1986), confirmed that there is a positive proportional relationship between 
the speed of urban growth and land prices. 

Moreover, as one of the most natural disaster-prone countries in the world, Japan is con-
tinuously involved in post-disaster reconstruction and redevelopment plans in affected re-
gions. These plans necessitate developing special land policies based on economically justi-
fied decisions supported by accurate references, such as land price maps assessing existing 
assets to encourage potential infrastructure investments, for instance. Therefore, land price is 
an important key for allocating land resources for wise regional and urban planning and de-
velopment, specifically in big cities and metropolitan areas characterized by recurrent 
changes in population and infrastructures (Hu et al., 2016). For these reasons, monitoring 
land prices has become a priority issue for decision-makers and under intensive investiga-
tion and analysis by academic researchers. In the Japanese context, spatial data for land 
prices is published every year by local and prefectural governments. Although this data may 
be downloaded free of charge from the internet, it is available only as GIS vector points and 
in a limited number of samples, which does not provide complete information for all market 
participants (Inoue et al., 2007). Because of this limitation, developing an approach for ac-
curately estimating and mapping land prices in all locations across a given study area based 
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on rigorous statistical principles is needed. Many estimation methods have been used sepa-
rately, including geostatistics-based models and machine learning algorithms. However, 
comparative analyses that investigate the methods with precise results are relatively scarce. 

There have been many empirical studies with the aim of estimating land prices in Japan, 
focusing mainly on the Tokyo Metropolitan Area (TMA). For instance, Shimizu and Nishi-
mura (2007) employed a hedonic approach based on OLS to develop commercial and resi-
dential land price indices for the core wards of the TMA, and then to investigate the struc-
tural changes in land pricing between 1975 and 1999 reflecting the pre-bubble, bubble, and 
post-bubble periods. The authors found differences in price structure due to location and 
fluctuations between supplier pricing and end-user preferences. Using the same estimation 
approach, Sasaki and Yamamoto (2018) estimated hedonic residential prices in the TMA by 
introducing “regional vulnerability” and “accessibility to destination stations” as two new 
explanatory variables. To the extent of our knowledge, however, only two English-language 
papers with the aim of mapping estimated land prices using GIS were published. The first 
study was conducted by Inoue et al. (2007) in which the authors used universal kriging to 
estimate land prices in Tokyo’s 23 wards spatially and temporally over 30 years (from 1975 
to 2004). By comparing kriging results with those of the OLS model, the authors found that 
the former performed better, with an estimation error ranging from 2% to 10% except during 
the period from 1986 to 1991 (approximately 20%) when the Japanese economy experienced 
harsh stagnation due to the fall in land prices and the stock price bubble (Shimizu et al., 
2015). The second study was carried out by Tsutsumi et al. (2011) in which they developed a 
computer-aided system that combines GIS and statistical theories to extract land price maps 
of the TMA based on free officially published residential land price observations. Regression 
kriging was used in the study, where two mathematical models of semi-variograms (expo-
nential and Gaussian) were employed. The results showed that the exponential model per-
formed better with a 10% average error ratio; the ratio was 18.3% for the Gaussian model. 
This study was a useful reference for the present paper, mainly in terms of the selection of 
explanatory variables and the regression kriging analysis. 

3  Materials and methods 

3.1  Study area 

The study area is Fukushima prefecture (Figure 1) located in the Tohoku region, Japan. The 
prefecture is divided into seven subregions (Aizu, Iwaki, Minamiaizu, Kenchu, Kennan, 
Kenpoku, and Soso). According to the Ministry of Internal Affairs and Communications, 
approximately 1,914,000 residents live in an area of 13,784 km2 with a total population den-
sity of 140 residents per square kilometer (MIAC, 2016). The region is characterized by a 
mountainous landscape mainly in the western region predominantly in Minamiaizu with the 
elevation ranging between 0 and 2333 m above sea level. Major cities, which are well con-
nected by railways and highways, are located in flat areas primarily in the coastal areas of 
Iwaki and Soso; the central region located in Kenpoku, Kenchu, and Kennan; and in the 
northeast region of the prefecture specifically in the Aizu subregion. Following the 2011 
Fukushima Daiichi accident, the prefectural government designated nuclear-contaminated 
areas as evacuation zones (Figure 1). These areas, located mainly in Soso and Kenpoku, are 
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divided into three zones according to radiation levels and authorized entry, business opera-
tions, and resident levels. Generally, previous residents are prohibited from living in all 
zones with some exceptions in areas labeled as “restricted residence zone” and “evacua-
tion-order cancellation preparation zone.” However, business operations are fully permitted 
in the outer zone, but are partially granted in the restricted-residence zone. 

 

 
 

Figure 1  Fukushima prefecture and its administrative boundaries, topographic features, transportation lines, and 
evacuation zones after the Fukushima Daiichi Nuclear Plant disaster (as of September 2015) 
 

Since the disastrous accident at the Fukushima Daiichi Nuclear Plant in the aftermath of 
the Great Earthquake of 2011, public opposition to nuclear power has intensified in Japan 
generally, and in Fukushima prefecture in particular given that it was the most affected pre-
fecture (Tsujikawa et al., 2016). This fact forced the prefectural government to rely more on 
clean energy resources to improve energy security (Wang et al., 2016), as part of a promis-
ing vision to become renewable energy self-sufficient by 2040 (Derdouri and Murayama, 
2018). 

Consequently, the prefectural government and interested investors are looking for optimal 
locations in the prefecture to develop renewable energy projects (e.g., solar, wind, and hy-
dro). However, for this site suitability exercise to be achieved, various evaluation criteria 
including “land price” are required. For instance, in a study carried out by Tegou et al. (2010) 
in which they evaluated the suitability of wind power plants on the Greek island of Lesvos, 
the authors considered the criterion “land value” to estimate the economic value of the area, 
among other factors. Likewise, Derdouri and Murayama (2018) extracted the map of the 
ideal sites for installing new wind parks in Fukushima prefecture. The authors, through a 
survey among local wind experts and different stakeholders, concluded that the evaluation 
factor “land price” is among the five most important criteria in the suitability analysis of 
wind farms in the prefecture. Therefore, the prefecture of Fukushima was selected as the 
study area of the present study. 

The prefecture has been the center of national and even global attention since 2011. Mul-
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tiple studies on the effects of the 2011 nuclear disaster on land prices were carried out. Ya-
mane et al. (2013), Tanaka and Managi (2016), and Kawaguchi and Yukutake (2017) con-
cluded that soil contamination resulted from the accident caused land prices to fall. However, 
these studies analyzed only short-term impacts. In contrast, Nishimura and Oikawa (2017) 
examined the long-term effects of the accident on land prices in the prefecture and areas 
surrounding nuclear reactors in Japan and found that the impacts are not significant. This is 
shown in Figure 2 illustrating the average values of land prices by land category from 2005 
to 2018 in the prefecture based on local and prefectural governments’ observation surveys. 
Before 2011, commercial, residential, and industrial land parcels had experienced continu-
ous slight decreases in value since 2005 by around 16,230 JPY/m2, 6340 JPY/m2, and 5492 
JPY/m2, respectively. However, forest land, which represents the most valuable type of land 
in the prefecture, with an average price of 143,200 JPY/m2 in 2005, lost approximately 
44,067 JPY/m2 of its value from 2005 to 2011. The cost of these types of land dropped 
sharply after the 2011 earthquake, losing another 8839 JPY/m2 by 2012. In contrast, minor 
drops in values were observed for the other types of land post-earthquake. Starting in 2013, 
we can see the prices for all types are generally steady with an observed slight decrease in 
the value of forest land compared to a small increase in the value of commercial, residential, 
and industrial land. Overall, from a historical perspective, the 2011 Fukushima Daiichi ac-
cident caused land prices to drop for a short period until 2013. Then these values stabilized 
with slight changes during the following years. 

 

 
 

Figure 2  Changes in land prices averaged by land type in Fukushima prefecture (2005–2018) 

3.2  Spatial estimation techniques 

The interpolation methods proposed in this research are divided into two groups: geostatis-
tical and machine learning based. The former refers to kriging, which is a widely applied 
method for interpolation developed by South African statistician Danie G. Krige (Krige, 1951) 
in the early 1950s. It deals with spatial correlations to compute the best linear unbiased pre-
dictor values at any unobserved location by relying on observed values of explanatory vari-
ables. The latter is a collection of algorithms that train machines to detect possible correlations 
in observations’ data. Tables 2 and 3 summarize the spatial estimation methods used in this 
study in addition to the R packages used for every model. The R geostat package (Pebesma, 
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2004) was used to perform kriging, whereas the caret package (Kuhn, 2008) was employed to 
implement machine learning methods. More details about these techniques are found in the 
following sections.  
 
Table 2  The three mathematical models used for kriging and their abbreviations 

Category Model Abbreviation R package 
Exponential krig.EXP 

Gaussian krig.GAU Geostatistical Universal kriging 

Spherical krig.SPH 

gstat (Pebesma, 2004)  

 
 

Table 3  Summary of spatial prediction models used in this study: Linear, nonlinear, and regression trees models 
are grouped as proposed by Kuhn and Johnson (2013). Abbreviations are used to refer to each method in the 
manuscript 

Category Model Abbreviation R package 
Generalized linear model GLM base 
Generalized additive model using splines GAMS mgcv Linear 
Support vector machines with linear kernel SVMLinear kernlab 
Multivariate adaptive regression spline MARS earth 
k-nearest neighbors kNN base Nonlinear 
Support vector machines with radial basis function kernel SVMRadial kernlab 
Cubist Cubist Cubist 

Stochastic gradient boosting GBM gbm (Ridgeway, 2005) Regression 
trees 

Random forest RF randomForest (Breiman, 2001) 
 

3.2.1  Regression kriging 

The first spatial estimation technique is regression kriging (Hengl, 2009; Hengl et al., 2007). 
The idea of multiple linear regression is to find the best linear equation that describes the 
relationship between two or more explanatory variables and the response variable. In this 
case, these variables are in the form of geographic data, and the following linear model is 
used to estimate the land price at any location: 

 0 ,
1

N

s i i s s
i

y x  


    (1) 

where s refers to each location, and ys is the value of the response variable, which in this 
case is the land price value at location s. Due to the skewed distribution of the land price 
values, we decided to work with the log10-transformed values instead. In addition, i denotes 
the index of the explanatory variables; its values are within the range (1, 2 … N) where N is 
the total number of explanatory variables considered. 0 and i are the parameters of the 
regression line. xi,s represents the values of the explanatory variables at location s. s is the 
residuals of the regression model. 

Kriging employs semi-variograms which are functions measuring the strength of the spa-
tial correlation as a function of distance based on Tobler’s first law of geography that every-
thing is related to everything else, but near things are more related than distant things (To-
bler, 1970). The semi-variogram is described in the following equation: 
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where N is the number of pairs of sample points separated by distance h, z(si) is the value of 
the target variable at some sampled location, and z(si+h) is the value of the neighbor at dis-
tance si+h. 

The three mathematical models, namely, exponential, Gaussian, and spherical, repre-
sented by equations (3), (4), and (5), respectively, are used to fit the semi-variogram to the 
curve to the empirical data of land prices. Consequently, the important characteristics (i.e., 
sill, range, and nugget) are determined for each model: 

 0 1 exp 0
( )

0 0

hc c h
h r

h


             
 

 (3) 

 

2

0 21 exp 0
( )

0 0

hc c h
h r

h



   
          




 (4) 

 

3

0

0

3 1 0
2 2

( )
0 0

h hc c h

h c c h
h


 

 

            
  
 

≤

 (5) 

To evaluate the performance of the models, validation and cross-validation are applied 
using root mean squared error (RMSE), which is a widely used formula to measure the error 
rate of a regression model. The following equation represents the RMSE: 

 
2

1
ˆ( )n

i ii
y y

RMSE
n




   (6) 

where ˆiy  and yi represent the predicted and real values, respectively, and n is the total 
number of validation points. 

3.2.2  Machine learning 

Machine learning is a collection of mathematics-, computation- and statistics-based methods 
that aim to automatically learn rules and dependencies from examples and data (Ratle et al., 
2010). In this study, we considered the nine machine learning algorithms listed in Table 3. 
These models can be classified into three categories following Kuhn and Johnson’s (2013) 
proposition: (1) linear, (2) nonlinear, and (3) regression trees. 

The three models of the first category are the generalized linear model (GLM), general-
ized additive model using splines (GAMS), and support vector machines with linear kernel 
(SVMLinear). They are practical in linear relationships between the dependent variable and 
covariates, and they seek to find estimated coefficients that minimize the sum of the squared 
errors. These models can be interpreted easily by analyzing the estimated coefficients. 
Moreover, due to the ability to compute standard errors, the significance of every covariate 
can be deduced. However, from a real-world perspective, they oversimplify complex prob-
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lems especially in the case of limited covariates. 
Nonlinear models include multivariate adaptive regression spline (MARS), k-nearest 

neighbors (kNN), and support vector machines with radial basis function kernel (SVMRa-
dial). In contrast to linear models, these models do not require knowing the form of the rela-
tionship between the dependent variable and explanatory variables beforehand. 

The third category comprises tree-based models, including Cubist (Cubist), stochastic 
gradient boosting (GBM), and random forest (RF). They are considered nonlinear models as 
well; however, they were categorized in a separate group due to their wide popularity. These 
models split the data into partitions based on one or more nested conditional statements 
[If … Then] according to the predictor values. Subsequently, for each partition, the outcome 
is determined. 

3.3  Explanatory variables and data sources 

Land value can be affected by various variables. According to Wen et al. (2018), these vari-
ables are frequently grouped into three types: (1) individual factors referring to the charac-
teristics of the land parcel such as size and shape; (2) neighborhood factors related to the 
characteristics of the land parcel including socioeconomic variables, external environment, 
and amenities; and (3) location determinants depicting traffic patterns and distance to the 
CBD. In the literature, multiple authors have associated the economic value of land with 
variables such as population density, proximity to railways, schools, and other facilities. For 
example, Zhuang and Zhao (2014) analyzed the effects of land use and railway stations on 
land prices in Fukuoka city of Japan concluding that land prices near railway stations and 
commercial or industrial hotspots are usually high. The closer the land to these locations, the 
expensive it becomes. Likewise, Kanasugi and Ushijima (2018) examined the impacts of a 
scheduled-to-open high-speed railway on residential land prices. The authors reported an 
increase in land prices in the areas that shortened travel time to the TMA. Kok et al. (2014) 
examined the determinants of land prices in the metropolitan area of the San Fransisco Bay 
Area. Results indicated that elevation and job density among other geographic, topographic, 
and demographic factors, are strongly associated with land economic values. Tsutsumi et al. 
(2011) linked land prices in the TMA with population density and land use, among other 
factors. Adegoke (2014) investigated the factors determining the value of residential proper-
ties in the Ibadan metropolis in Nigeria. Adegoke found a significant relationship between 
land price and mainly the population density and level of development. Other studies have 
linked proximity to urban facilities, such as schools, parks, and sports-related venues with 
mainly residential prices in Singapore (Murakami, 2018), China (Liu et al., 2007), Kuwait 
(Mostafa, 2018), Spain (Chica-Olmo et al., 2019), and the United States (Clapp et al., 2008; 
Espey and Owusu-Edusei, 2001; Kiel and Zabel, 2008). In conclusion, the selection process 
of suitable factors depends mainly on various elements, such as the setting of the designated 
target area, type of land price (e.g., residential and commercial), and the availability of aspa-
tial or spatial data. 

In this study, we based the selection of explanatory variables on the literature by consider-
ing the following elements: (1) the land parcels are within urban and rural areas, (2) the land 
parcels are not only for residence purposes, and (3) the availability of free spatial data satisfy-
ing two necessary conditions in accordance with the following (Tsutsumi et al., 2011). First, 
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the corresponding spatial data of each explanatory variable should cover the whole prefecture 
of Fukushima, so that the estimated land price can be calculated at any location within the 
study area. Second, the data should have been collected during the same year as much as 
possible (i.e., 2015). Table 4 shows the final list of the explanatory variables, where the 
column heading “Data” indicates the sources of data listed in Table 1, and “GIS function” 
refers to the ArcMap’s function that was used to extract the variable values from the data. 
 

Table 4  List of explanatory variables selected in this study with their data sources and the related abbreviations 
Explanatory variables Data GIS function Variable description Abbreviation 

Distance to the nearest railway sta-
tion (m) 

Railway 
stations Near Calculated using the railway 

stations layer Distance 

Area of rice fields [m2] Paddy 
Area of other agricultural land (m2) Agricultural 
Area of forests (m2) Forests 
Area of uncultivated land (m2) Uncultivated 
Area of roads (m2) Roads 
Area of railways (m2) Railways 
Area of other land uses (m2) Other uses 
Area of water bodies (m2) Water 
Area of seashore (m2) Seashore 
Area of the surface of the sea (m2) Sea 
Area of golf courses (m2) 

Land uses 
within a 
square 
kilometer

Spatial Join 

The areas of different land-uses 
within one square kilometer 
classified according to the Na-
tional Land Numerical Informa-
tion 

Golf 

Dummy variable for urbanization 
promoting area 

Promoted 
urbaniza-
tion areas

Spatial Join 
A dummy variable; if the point 
location falls inside the area, the 
variable value receives 1, else 0 

Promotion 

Population density (persons/km2) Population Spatial Join 
Calculated using the population 
data of 2015 for every minor 
municipal district 

Density 

Number of enterprises Enterprises Enterprises 
Number of employees Employees Spatial Join Statistical GIS data of 2015 for 

every minor municipal district Employees 

Elevation (m) DEM Extract Multi 
Values to Points Elevation of the point location Elevation 

 

The present study exploits publicly available and no-cost data from different sources. Da-
ta on published and prefectural land price observations of the year 2015 was downloaded 
from the National Land Numerical Information download service1 (Ministry of Land, Infra-
structure, Transport, and Tourism) as GIS vector data. Other data layers were obtained from 
the same source, including railway stations, promoted urbanization areas, and a grid of 1 
km2 cells containing information about the area of every land use. Data on population of 
2015 census, number of enterprises, and employees of every minor municipal district was 
collected from the Statistics Bureau of Japan2. Finally, a digital elevation model (DEM) was 
downloaded using EarthExplorer of USGS3. Table 5 summarizes the data used in this analy-
sis and describes the sources of the data and the year of release. 

3.4  Methodological framework 

The proposed methodology for this analysis is illustrated in Figure 3. It consists of three 
parts: (1) data preparation using GIS software ArcGIS, (2) geostatistical analysis employing 
the software RStudio (https://www.rstudio.com/), and (3) machine learning modeling using 

 
                    
1 National Land Numerical Information download service. URL: http://nlftp.mlit.go.jp/ksj-e/gml/gml_datalist.html (in 
English) 
2 Statistical GIS - Portal site for Japanese Government Statistics. URL: https://www.e-stat.go.jp/gis (in Japanese) 
3 United States Geological Survey. URL: https://earthexplorer.usgs.gov/ 
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RStudio. A detailed explanation of every part is given in the following sections. 
 

Table 5  Overview of datasets used in the study, their sources, and the year of release 

Data layers Source Year 

Land price observations (published and prefectural) 2015 

Railway stations 2015 

Land uses within 1 km2 area and their areas 2014 

Promoted urbanization areas 

National Land Numerical 
Information 

2011 

Population of every minor municipal district 

Number of enterprises and employees of every minor municipal district 
Statistics Bureau of Japan 2015 

DEM USGS – 
 

 
 

Figure 3  Methodological framework of the study 
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Data preparation: The first part consists of preparing a points-data layer A and points 
grid B. The former contains the merged observations of land prices (resulted from published 
and prefectural observation surveys) covering the extent of the study area, including the six 
neighboring prefectures: Miyagi, Yamagata, Niigata, Gunma, Tochigi, and Ibaraki. The ex-
tent of the study area was considered in this analysis to include more observation points and 
to make them distributed all over Fukushima prefecture as shown in Figure 4. The latter is 
the layer of the central points of a 1 km2 cell mesh where the horizontal distance between 
every two points is about 1100 m, and the vertical distance is approximately 900 m. Layer A 
and grid B contain the same fields representing the explanatory variables, including the dis-
tance to the nearest railway station, population density, elevation, surface of every land use 
within an area of 1 km2, and a field representing whether a point falls within the promoted 
urbanization zone or not. For every point of A and B, the values of these explanatory vari-
ables are extracted using the Near, Spatial Join, and Extract Multi Values to Points functions 
in ArcMap. 

 

 
 

Figure 4  The distribution of land price samples in the study area 
 

Geostatistical analysis: This part includes a two-step procedure which is regression 
kriging. Based on Matheron’s theory, a regionalized variable can be modeled as a sum of 
two components: deterministic and stochastic (Szymanowski et al., 2013). First, multiple 
regression analysis is applied with the assumption that the dependent variable 
(log-transformed land prices) is spatially correlated with a collection of explanatory vari-
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ables in which their values are known at every location in the study area. Second, as ex-
plained in Section  3.2.1, we use three mathematical models (exponential, Gaussian, and 
spherical) to fit the variogram. Consequently, we use the fitted semi-variogram for every 
model to predict the values log-transformed land prices at all points of grid B. We then per-
form validation and cross-validation to assess the accuracy of the results of the three models 
by calculating the RMSE. 

Machine learning modeling: The last part of the analysis consists of running machine 
learning methods using R’s caret library. By applying the ArcMap function Point to Raster 
on grid B, rasters representing explanatory variables are created. Thirteen machine learning 
algorithms are applied. We randomly split the observation samples into training samples 
(70%) and testing samples (30%). To compare the performance of these methods, the same 
training and testing samples were used for both approaches. 

4  Results 

4.1  Regression analysis 

Before the geostatistical analysis and machine learning modeling were carried out, linear 
regression analysis was performed to find the relationship between selected explanatory 
variables and the independent variable (i.e., log-transformed land prices). Table 6 lists the 
regression parameters and their estimates calculated using the generalized least-square  
 
Table 6  Regression results with detailed explanatory variables and their estimated coefficients 

Variables Unit Coefficients’ estimate 

Intercept – 4.439 *** 

Distance to the nearest railway station m –2.09  10–5 *** 

Population density persons/km2 3.104  10–5 *** 

Area of rice fields m2 –3.935  10–7 *** 

Area of other agricultural land m2 –4.731  10–7 *** 

Area of forests m2 –2.733  10–7 *** 

Area of uncultivated land m2 –7.437  10–7 . 

Area of roads m2 7.211  10–7 ** 

Area of railways m2 –3.301  10–8  
Area of other land uses m2 –8.97  10–8  
Area of water bodies m2 –3.086  10–7 *** 

Area of seashore m2 –1.922  10–6  
Area of the surface of the sea m2 –1.25  10–7  
Area of golf courses m2 –5.843  10–8  
Dummy variable for urbanization promoting area – 1.819  10–1 *** 

Elevation m –1.556  10–4 ** 

Number of enterprises – 3.363  10–4 ** 

Number of employees – –2.951  10–5 * 
Number of samples = 1092; residual standard error = 0.1683, multiple R2 = 0.7408, adjusted R2 = 0.7349;  
F-statistic = 125.7, p-value = < 2.2  1016  
*** = sign. at 1% level ** = sign. at 5% level 
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method. As expected, the coefficients of “population density,” “area of roads,” “area of 
railways,” and “dummy variable for urbanization promoting area” are positive. However, 
those for “distance to the nearest station” and “elevation” are negative, because the price of 
land decreases when the land is farther away from the nearest railway station or when the 
land is located in a mountainous area. 

Regarding the accuracy of the regression model, the output F-statistic = 190.1 (p-value < 
2.2  1016) indicates that we should reject the null hypothesis that the explanatory variables 
collectively do not affect land prices. The adjusted R2 refers to the total percentage of sample 
points explained by the regression model. In this case, the total variation in the land price of 
about 73% of the points is explained by the explanatory variables. 

4.2  Geostatistical analysis 

For the geostatistical analysis, three mathematical models were used to perform kriging. 
Figure 5 illustrates the final corresponding fitted semi-variograms. All three models have 
nugget and sill values that are relatively equal to 0; however, the range of the krig.SPH 
model (1438 m) is approximately two times the krig.EXP’s (644 m) and the krig.GAU’s 
(760 m). 

 

 
 

Figure 5  Fitted semi-variograms for the kriging models for the year 2015: (a) Exp: Exponential (b) Gau: Gaus-
sian (c) Sph: Spherical. The nugget, range, and sill values and the mathematical models are shown in the bottom 
right corner 

 
Figure 6 shows the results of the regression kriging using exponential, Gaussian, and 

spherical models, respectively. The maps on the left present the prediction results of 
log-transformed land prices, whereas the maps on the right show their validation errors. The 
validation error maps show that land price values were underestimated within urban areas (< 
10 km) mainly in Fukushima, Koriyama, and Iwaki cities. However, the prices were overes-
timated outside the urban domain (> 10 km). These fluctuations may be attributed to many 
possible reasons: (1) the high density of observation points within urban areas and the low 
density elsewhere, (2) the broad study area, and (3) the use of a single model to predict 
prices within and outside urban areas. 

The accuracy of the results of the kriging models was evaluated using validation and 
cross-validation approaches. Table 7 shows the RMSE values calculated using both methods. 
The models’ prediction errors are relatively equal, which range approximately between 
15.1% and 15.9% for validation and cross-validation. The exponential model gives slightly 
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better outcomes in both tests, which coincide with the result found by Tsutsumi et al. (2011) 
as well as Chica-Olmo et al. (2019). Figure 7 shows the land price maps for the year 2015 
compiled based on officially published observational data. 

 

 
 
Figure 6  The results of the regression kriging for the year 2015 using the exponential model (upper), Gaussian 
model (middle), and spherical model (lower). On the left are the estimated log-transformed land prices using 
regression kriging. On the right are the validation errors in the training samples. Capital letters denote major cities 
within Fukushima prefecture, which are A: Fukushima, B: Koriyama, C: Iwaki, D: Aizuwakamtsu, and E: Shira-
kawa 

 

Table 7  Prediction errors of validation and cross-validation tests for the three kriging models 

Validation Cross-validation 
Mathematical models 

RMSEV (%) RMSECV (%) 

Exponential 15.32 15.1 

Gaussian 15.86 15.57 

Spherical 15.57 15.5 
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Figure 7  Land price maps for the year 2015 predicted from officially published land price observations using 
regression kriging based on three mathematical models (ordered from left to right): (1) Krig.EXP: Exponential 
model, (2) Krig.GAU: Gaussian model, and (3) Krig.SPH: Spherical model 

4.3  Machine learning modeling 

The performance of the nine machine learning methods was assessed in terms of the mean 
absolute error (MAE), the RMSE and R2. Additionally, testing samples were used to calcu-
late the overall accuracy of the methods (Figure 8 and Table 8). The different performance 
indicators generally show good values for both validation tests. For 10-fold cross-validation, 
the MAE ranges from 11.39% to 13.50%, the RMSE from 15.37% to 17.35% and R2 (R2

CV) 
from 72.24% to 79.17%. Using the testing samples, R2 (R2

test) was calculated which has val-
ues ranging between 59.12% and 77.68%. The results indicate that these values are lower 
than R2

CV, and the difference ranges between 1.49% and 13.61%. Among these methods, RF 
seems to be the most robust method in terms of all performance indicators in agreement with 
the conclusions of Antipov and Pokryshevskaya (2012). Moreover, it can be found that re-
gression tree algorithms generally score better results than nonlinear and linear methods as 
their RMSE values are above 70% in both validation tests. 

 

 
 

Figure 8  Boxplots of performance of machine learning methods in terms of the MAE, the RMSE, and R2 for the 
year 2015 
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Table 8  Prediction errors and accuracy of machine learning methods 
10-fold cross-validation Testing samples Difference Method 

MAE (%) RMSE (%) R2
CV (%) R2

test (%) R2
CV (%) – R2

test (%) 
GLM 13.50 17.29 72.47 59.94 +12.53 

GAMS 12.03 15.37 78.13 68.72 +9.41 Linear 
SVMLinear 13.38 17.25 72.73 59.12 +13.61 

MARS 12.11 15.52 77.90 70.78 +7.12 
kNN 13.38 17.35 72.24 68.03 +4.21 Nonlinear 

SVMRadial 12.55 16.27 75.53 70.02 +5.51 
Cubist 12.19 15.60 77.72 72.74 +4.98 
GBM 12.16 15.68 77.40 70.83 +6.57 Regression tree 
RF 11.39 14.97 79.17 77.68 +1.49 

 

 
 

Figure 9  Observed land prices vs. predicted land prices for the year 2015 in the testing samples by different ma-
chine learning methods (ordered from left to right, up to down): (1) GLM: generalized linear model, (2) GAMS:  
generalized linear model using splines, (3) SVMLinear: support vector machines with linear kernel, (4) MARS: mul-
tivariate adaptive regression spline, (5) kNN: k-nearest neighbors, (6) SVMRadial: support vector machines with 
radial basis function kernel, (7) Cubist, (8) GBM: stochastic gradient boosting and (9) RF: random forest 
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Figure 9 presents the observed land prices and the predicted land prices for the year 2015 
for the testing samples using different machine learning methods. Figure 10 presents the 
resulting maps of the predicted land prices of 2015 in the study area using machine learning 
algorithms. The spatial resolution of all maps is 100 m. All models show that land prices are 
spatially dependent on the distance to railways. The farther from railways the land, the 
higher the price. In remote areas around railways, the price ranges from 9500 JPY/m2 to 
12,000 JPY/m2. Moreover, the most expensive land is located by all models within urban 
areas. Elevation was taken into consideration by most of the models except SVMRadial 
model that completely failed to consider topographic features, as it classified remote and 
mountainous areas in the southeastern (e.g., Mount Hiuchigatake with an elevation of 2356 
m) and northern areas, for example, as high land price zones where the price  
  

 
 

 

Figure 10  Land price maps for the year 2015 predicted from officially published land price observations using 
machine learning algorithms (ordered from left to right, up to down): (1) GLM: generalized linear model, (2) GAMS:  
generalized linear model using splines, (3) SVMLinear: support vector machines with linear kernel, (4) MARS: mul-
tivariate adaptive regression spline, (5) kNN: k-nearest neighbors, (6) SVMRadial: support vector machines with 
radial basis function kernel, (7) Cubist, (8) GBM: stochastic gradient boosting and (9) RF: random forest 
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exceeds 16,500 JPY/m2. However, other models, including GAMS, MARS, kNN, and GBM, 
predicted medium (5000–9500 JPY/m2) land prices for the summit region. 

4.4  Comparison of geostatistical analysis and machine learning modeling results 

For both analyses, we considered a similar set of training and testing samples to make the 
results of the different methods comparable. Consequently, we calculated the differences 
between the predicted land prices by the most robust machine learning methods (i.e., RF, 
Cubist, MARS, and GAMS) and the best-performing kriging based on the exponential model. 
The map results are illustrated in Figure 11. It can be seen that all maps have similar patterns  

 
 

Figure 11  Maps of differences in the 2015 land prices between the best-performing machine learning algorithms: 
(1) RF: Random Forest, (2) Cubist, (3) MARS: Multivariate Adaptive Regression Spline and (4) GAMS:  Gener-
alized Linear Model using Splines and kriging exponential model. A1, A2, A3, and A4 show zoomed-in maps of 
Koriyama city and its outskirts 
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across the study area, and the land price differences mostly range between –5000 JPY/m2 
and 5000 JPY/m2. 

In general, the kriging model estimates high values for land prices in areas around rail-
ways and urban areas, which can explain the negative difference values ranging from –5000 
JPY/m2 and –1000 JPY/m2 in these areas. However, positive values indicating lower estima-
tions of land prices by kriging compared to machine learning methods (except Cubist) are 
scattered across the study area and generally spotted in mountainous areas. In the same fig-
ure, A1, A2, A3, and A4 show zoomed-in maps of Koriyama city, which illustrate sharp 
fluctuations in differences in land prices within urban areas. Land prices estimated by 
kriging in the city center where there is dense population and near railway stations tend to be 
classified as very high (–149,570 JPY/m2 to –20,000 JPY/m2) and high (–20,000 JPY/m2 to 
–5000 JPY/m2) compared to other methods. The farther from the city center, the lower the 
land price differences. 

In terms of the quantitative results of the two approaches, we compared the area percent-
ages of land price ranges in the prefecture and its subregions. Given their superiority com-
pared to the other models of each approach, RF and krig.EXP are considered. Areas of des-
ignated evacuation zones resulting from the Fukushima Daiichi accident were excluded in 
this analysis. For the sake of simplicity, we classify the degree of prices according to the 
following classification: (1) low price: [500–6000 JPY/m2], (2) medium price: [6001–10,000 
JPY/m2], and (3) high price: [10,001–320,000 JPY/m2]. The results are illustrated in Figure 
12. In general, similarities between percentage values of RF and krig.EXP can be seen in 
most subregions and for almost all price ranges except for low-price ranges [4001–6000 
JPY/m2] and [6001–12,000 JPY/m2]. In the whole prefecture, both distribution graphs of the 
area percentage of land price based on RF and krig.EXP follow a normal distribution. It can 
be seen that more than 80% of the land of the prefecture cost between 4000 JPY/m2 and 
12,000 JPY/m2. Minamiaizu is the cheapest subregion in terms of the economic value of 
land, with approximately 95% of the land costing less than 10,000 JPY/m2. This can be at-
tributed to the vast area of remote and mountainous areas, and likely the lack of an economic 
hotspot in the region. Neighboring subregions Aizu, Kennan, and Kenchu are not as cheap 
with 94%, 92%, and 91% of land, respectively, below 12,000 JPY/m2. Based on RF, the 
subregions with a big share of areas of high-price land costing more than 10,000 JPY/m2 are 
Kenpoku (33%), Iwaki (27%), and Soso (26%). However, based on krig.EXP, Soso has ap-
proximately 46% of high-price land, followed by Iwaki (42%), and Kenpoku (41%). Al-
though there are significant differences between the results obtained (8%–15%), RF and 
krig.EXP managed to rank these subregions among the first three in terms of high-price land. 
These areas, as shown in Figures 1 and 4, are characterized by flat areas and cities serving as 
economic centers that are well connected by railways. More importantly, these subregions 
surround the evacuation zones declared after the Fukushima Daiichi accident where, as of 
May 2015, 113,983 persons were forced to leave their homes, of whom 67,782 continue to 
live as evacuees within the prefecture. It is likely that evacuees chose to flee to nearby cities 
located mainly in Soso, Iwaki, and Kenpoku. This perhaps influenced the price of land in 
these subregions. Overall, land prices in the prefecture are unevenly distributed with most of 
the medium and expensive land parcels located in the western area of the region character-
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ized by flat areas, the availability of multiple populated economic hotspots. The regional 
prices are influenced heavily by the proximity to railways within urban, rural, or remote ar-
eas. 

 

 
 

 

Figure 12  Area percentage of RF- and krig.EXP-based estimated land price for the year 2015 distributed by 
predefined ranges in Fukushima prefecture and its subregions 
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5  Discussion and conclusions 
5.1  Discussion 

5.1.1  Evaluation of the performance of the prediction methods 
In this study, we compared the results of the 2015 land prices estimation in Fukushima pre-
fecture based on geostatistical models and various popular machine learning algorithms, 
which can be grouped into three categories: linear, nonlinear, and regression tree. We em-
ployed separate GIS-based frameworks to extract the predicted land price maps of each 
model and algorithm relying mainly on freely available GIS data and land price observations 
in the form of GIS point data published by local and prefectural governments. Based on the 
literature and considering the availability of data, we first selected the most likely factors 
influencing land prices in Fukushima prefecture, which has many cities and is known for its 
varied landscape with the elevation ranging from 0 to 2333 m. These variables include 
population density, proximity to railway stations, elevation, and land use. We then per-
formed a regression analysis to analyze the relationship between the selected explanatory 
variables and the log-transformed land prices. The results indicated that the selected factors 
explain the variation in land price of approximately 73% of the samples. 

The first approach for estimating land economic values was based on geostatistical 
mathematical models of regression kriging, namely, exponential, Gaussian, and spherical. 
We determined the parameters of the semi-variograms of each model using the eye-fit 
method. To assess the estimation accuracy, we performed validation and cross-validation 
tests based on randomly selected training and testing samples representing 70% and 30% of 
the samples, respectively. Both tests showed that the exponential model (krig.EXP) gives 
slightly better results than the Gaussian model (krig.GAU) and the spherical model 
(krig.SPH), which concur with the conclusions reached by Tsutsumi et al. (2011) and 
Chica-Olmo et al. (2019). The second approach for predicting land prices was to employ 
nine popular ML algorithms split into three categories: (1) linear (GLM, GAMS, and 
SVMLinear), (2) nonlinear (MARS, kNN, and SVMRadial), and (3) regression tree (Cubist, 
GBM, and RF). The performance of each algorithm was assessed based on the calculation of 
the MAE, the RMSE, and R2 following 10-fold cross-validation based on the same set of 
training/testing data used for the previous approach. According to the results, regression tree 
algorithms performed better; the RF was clearly superior in terms of all errors and accuracy 
indicators. This result coincides with the outcome of previous studies, such as the ones car-
ried out by Antipov and Pokryshevskaya (2012) and Schernthanner et al. (2016). Empirically, 
compared to the lowest RMSE of krig.EXP (15.1%), only the regression tree’s RF performed 
better, whereas all nonlinear and linear models performed worse. 

For both approaches, maps of the 2015 spatial variation of estimated land prices in Fuku-
shima prefecture were extracted. The resulting maps showed a strong influence of railways 
on land prices in the region, which was in agreement with the conclusions of Zhuang and 
Zhao (2014) and Kanasugi and Ushijima (2018). The closer to railways and the stations, the 
more expensive the land price. Additionally, all maps showed high prices in urban areas 
ranging from 12,000 JPY/m2 to 370,000 JPY/m2. However, all maps based on geostatistical 
models and five of the ML methods (GLM, SVMlinear, kNN, Cubist, and RF) showed lower 
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values in remote and mountainous areas. GAMS- and MARS-based maps either underesti-
mated or overestimated land values in mountainous areas mainly in the southwest of the re-
gion known for its high mountain peaks reaching a maximum altitude of 2564 m. The GBM 
map showed lower values in mountainous areas yet dispersed in uniform patterns. SVMRa-
dial completely failed to map land prices in these areas as it overestimated the value reach-
ing 370,000 JPY/m2. The next step was to extract maps of land value differences between 
the best-performing ML algorithms (RF, GAMS, Cubist, and MARS) and the regression 
kriging exponential model (krig.EXP). Through a qualitative visual inspection of these maps, 
we concluded that the land price differences range between –5000 JPY/m2 and 5000 JPY/m2. 
Huge positive and negative differences are found mainly in urban areas. 

5.1.2  Limitations and suggested future directions 

This study is a contribution to the growing literature on the estimation and the mapping of 
land prices at the regional level. To the best of our knowledge, it is the first of its kind in the 
study area and one of the few papers to compare empirically and visually estimated land 
prices using regression kriging and typical ML algorithms of the likes of RF, SVM, and kNN. 
However, some problems remain unsolved and should be addressed in future studies. First, 
we recognize that the selection of explanatory variables is very important when estimating 
and mapping land prices. However, due to availability issues or high costs, acquiring spatial 
data covering a wide area is not always possible. New methods of acquiring data remain to 
be considered. Moreover, relying only on published literature to select potential factors 
might not always be fruitful as these variables depend significantly on the settings of the 
target area. Thus, conducting a transparent multi-criteria analysis based on surveys among 
local experts is an option to be considered. Second, the developed frameworks are based 
only on one model for an entire prefecture, which generated overestimated land prices in 
urban areas and underestimated values in suburban areas in the case of geostatistical models. 
The accuracy of these models’ results can be further improved by combining multiple mod-
els to create hybrid models of the sort of GWR kriging suggested by Harris et al. (2010) or 
ensemble learning algorithms as introduced by Dietterich (2000) and explained further by 
Zhou (2012). 

5.2  Conclusions 

Having accurate and updated maps of land prices aids market actors in making decisions. 
These maps constitute an essential reference for planning authorities and key investors be-
fore starting any regional-level project. In Japan, maps of this kind are not publicly available; 
most of the real estate companies do not share their precise maps publicly, because their ex-
traction requires a considerable amount of time and resources. Luckily, every year the Japa-
nese local government, as well as the prefectural governments, releases observation samples 
of land prices as a result of separate field surveys. Though limited and dispersed, these ob-
servations constitute a valuable asset of information. In recent years, multiple models have 
been applied to estimate and to map land economic values with a considerable share of them 
based on hedonic models; focusing mainly on estimating residential prices in urban areas. 
This study, however, employed geostatistical methods and machine learning algorithms to 
estimate and to map general land prices of 2015 at the macro-scale in Fukushima prefecture. 
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The primary purpose was to compare quantitatively and qualitatively all these models in 
terms of the predictions’ accuracy errors. 

As one of the geostatistical methods, regression kriging was applied based on three 
mathematical models (krig.EXP, krig.GAU, krig.SPH) to predict land prices. The validation 
and cross-validation results show that the exponential model (krig.EXP) gives slightly better 
results. For ML algorithms, we empirically compared nine algorithms grouped into three 
categories: linear (GLM, GAMS, SVMLinear), nonlinear (MARS, kNN, SVMRadial), and 
regression tree (Cubist, GBM, and RF). Results of the prediction accuracy based on the 
RMSE, the MAE, and R2 show the superiority of the regression trees models to estimate 
accurately land prices, while linear models were the worst models. Among all methods, RF 
was the most robust method for estimating land prices reliably. The final ranking of all 
methods according to the cross-validation RMSE in descending order is RF (14.97%), 
krig.EXP (15.1%), GAMS (15.37%), krig.SPH (15.5%), MARS (15.52%), krig.GAU 
(15.75%), Cubist (15.6%), GBM (15.68%), SVMRadial (16.27%), SVMLinear (17.25%), 
GLM (17.29%), and kNN (17.35%). A qualitative comparison of the maps’ results of the 
most accurate methods indicates that kriging highly estimates land prices in mountainous 
areas, and the outskirts of urban areas, and predicts lower values within city centers where 
population density is high. It can be concluded that railways affect the price of land heavily. 
All models demonstrated this fact, and the differences in the values obtained by subtracting 
the RF, Cubist, MARS, and GAMS values from the kriging values are medium around rail-
ways and quasi-equal beyond. Although geostatistical models and machine learning algo-
rithms can efficiently estimate land prices, the accuracy of these models’ results can be fur-
ther improved by combining multiple models to create hybrid models and ensemble learning 
algorithms. 
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